AFRL-IF-RS-TR-2000-68
Final Technical Report
May 2000

AN INTERACTIVE ASSISTANT FOR DECISION
MAKING

University of Rochester

James F. Allen and George M. Ferguson

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20000628 025

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK LTI QUALITY INCFECTED 4

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations. ‘

AFRL-IF-RS-TR-2000-68 has been reviewed and is approved for publication.

sammov ||, &JWE@%

WILLIAM E. RZEPKA
Project Engineer

FOR THE DIRECTOR: %y\ QL{./ Z é

NORTHRUP FOWLER, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Road, Rome, NY 13441-4505.

This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 07040188

mmqummunmmwmmkmumm1mpmmmnmmmmumaumpmummmnm-nmq-dnm
the of it Send ﬂummuuwcmmnlmmdmmmmwOummmlo Serwces, tor
Dparatrons and Reports, 1215 Jetierson Davis Highway, Suits 1204, Arington, VA IHOZAMZdme"udWIIdWL m-mnnmmummmwm DC 20503.

T, AGENCY USE ONLY (Leave blank) 7. REPORT DATE 3 REPORT TYPE AND DATES COVERED
MAY 2000 Final Sep 97 - Nov 99
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
AN INTERACTIVE ASSISTANT FOR DECISION MAKING C - F30602-97-1-0348
PE - 62702F
PR - 5581
6. AUTHORIS) TA - 27
James F. Allen and George M. Ferguson WU - 03
e e S R ARIZATION NAME(S) AND ADDRESSIES] 8. PERFORMING ORGANIZATION

T PERFORMING DRGANIZATION NAME(S) AND ADDRESSIES!
University of Rochester

Computer Science Department N/A
734 Computer Studies Building
Rochester NY 14627-0226

REPORT NUMBER

mmmm 70, SPONSORING/MONITORING

Office of Naval Research Air Force Research Laboratory/IFTD AGENCY REPORT NUMBER

Boston Regional Office 525 Brooks Road

495 Summer St., Rm 103 Rome NY 13441-4505 AFRL-IF-RS-TR-2000-68
Boston MA 02210-2108

e e—————————

T1. SUPPLEMENTARY NOTES
Air Force Research Laboratory Project Engineer: William E. Rzepka/IFTD/(315) 330-2762

e 7 1 VT3 ™F
120. DISTRIBUTION CODE

1Za. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

I —
13, ABSTRACT (Maximum 200 words)
This project involved extending and modifying our previous work on interactive decision-making in TRIPS, the Rochester

Interactive Planning System (Ferguson and Allen, 1998; Ferguson, et.al., 1996). The goal was to enable information acce
to and from remote sources and seamlessly integrate them into the overall system. In this project, we have focused on usin,
Java to facilitate interfacing TRIPS to remote users and, eventually, for integrating additional information sources and
reasoners into the system. Java offers potential advantages at several different levels, from the portability of the graphical
components, to the simplified networking, all the way to tightly-coupled, object-oriented, method-call inter-module
communication. This project was intended to investigate these possibilities, use as many as seem useful and feasible, and
provide feedback on the overall suitability of Java in a system like TRIPS. The main goals of the project were (a)
evaluation of Java for use in TRIPS; (b) porting TRIPS interface components to Java to enable remote access to the system;
and (c) porting to and evaluation of a Fujitsu 1200 tablet computer with wireless network to enable truly portable access to

the system.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Interactive Decision Making, Remote Access 102
76 PRICE CODE

T3 SECURTTY CLASSIFIGATION |20, LIMITT,

7. SECURITY CLASSIFICATION T8, SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 20. LIMITATION OF

OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

Form 208 (Rev. 2-89) (E0) '

Standard
Prescribed by ANS! Std. 239.18
Desgred using Pertorm Pro, WHSIDIOR, Oct 94

Abstract

This project involved extending and modifying our previous work on in-
teractive decision-making in TRIPS, The Rochester Interactive Planning
System (Ferguson and Allen, 1998; Ferguson, et. al., 1996). The goal was to
enable information access to and from remote sources and seamlessly in-
tegrate them into the overall system. In this project, we have focused on
using Java to facilitate interfacing TRIPS to remote users and, eventually,
for integrating additional information sources and reasoners into the sys-
tem. Java offers potential advantages at several different levels, from the
portability of the graphical components, to the simplified networking, all
the way to tightly-coupled, object-oriented, method-call inter-module
communication. This project was intended to investigate these possibili-
ties, use as many as seem useful and feasible, and provide feedback on the
overall suitability of Java in a system like TRIPS. The main goals of the
project were (a) evaluation of Java for use in TRIPS; (b) porting TRIPS in-
terface components to Java to enable remote access to the system; and (c)
porting to and evaluation of a Fujitsu 1200 tablet computer with wireless
network to enable truly portable access to the system.

Table Of Contents

1 TRIPS OVEIVIEW ..coeirrecreiiiiiciiiinieietesie sttt s 1
2 Java Reimplementation Project ... 3
3 Development Plam ... 4
4 AcCOMPIISHMENES ..ottt s 6
41 Java KQML INfrastructurecocoieevenineistnesiniiiniiit s 6
42 Basic Interface COMPONENtS......cceeieeiinreniniininiiiniicie e 7
4.3 TRIPS Facilitator (Input Manager)cooeveerescscemnmnmsiniiiiisiiisssseess 7
4.4 Applets and the “Java DesKtOP”ocveureimmiciimnininiistissisnsssseiscrisd 9
45 Remote Audio Using Java SOUNd......cooeeeeeeinieiiniininiiiiiensceicncees 10
4.6 Portable Access to TRIPS via Tablet Computercovuuieniniissnnns 11
5 FULUIE WOTK oottt st bt 12
6 CONCIUSIONS..cuiirieeeeieeeeniiteersete ettt 13
7 RELEIEIICES ettt sttt sttt bbbt 13
A. Documentation for Package TRIPS. KQML......ccocoviiinniiiiiisissenee 15
A.1l. Interface KQMLRECEIVETcceeveeeeereiriiniiiensresseniiesinessiassssscssstsssessssssnssnsssenns 16
A.2. Class KOMLLISL.....ccueciierinrieneneeetesineetesste st sssssne st ese s ss st st sa s nases 25
A.3. Class KQMLODJECtcccuiiiimirmrirninisnstetseerissaieiissss s 30
A.4. Class KOMLPErformative.....o.ceeceriiiiiiieeinreesiennssseessessscessssnscsnsssisssssens 31
A.5. Class KOMLQUOAtOM. c.ccoieieeeeicriaiisienrreiesssssesste ettt ssassananes 34
A.6. Class KOMLREAAETcccuevrirrieeeeiiriisiinienieesiesssssaesaesucesssesasssiiosssssssssssssssnes 36
A.7. Class KQMLReaderThread.......c.ocoviverviiiiiininneneiniccncnccneniieenens 39
A.8. Class KQMLSIING.cvurmririneieirirssnssietstseseeneseiss s 42
A.9. Class KQMLBadCharacterEXCeption........ccoeeueneiiniiiiiinniiniiiniinneene 45/46
A.10. Class KQMLBadCIOSEEXCEPHIONvivrumumieciininrennesiisisiininsisinsasnes 47/48
A.11. Class KQMLBadCommaEXCePtioncccviereeneniiiniiiiiiiieininstens 49/50
A.12. Class KQMLBadHashEXCEPHONcooiieriirnnnenisinieccniiisnientsisisinies 51
A.13. Class KQMLBadOpenEXceptionccceeieenirmiuicniiniiininiinnisicsescens 53/54
A.14. Class KQMLBadPerformativeEXCeptionc.coiininiinnniieniienenes 55/56
A.15. Class KQMLEXCEPHOM ...cueuiuiiinrenineistsenieiccens sttt 57
A.16. Class KQMLExpectedWhitespaceEXception........ccueeiinnnisisissinccenn. 58
B. Documentation for Package TRIPS. TripSApPpPIet ..o, 59/60
B.1. Class THPSAPPLEt..c.iiririrttei it 61
B.2. Class TripSAPPIEtFrame.. ..o ieeceeinineiiii s 79
B.3. Using TripsApplet Classescoevevimuiisiiiiiniiissnii et 85
C. Signing Applets in the JDK1.1 Security Model......cooiiiniiiinininiiniiinens 86

i

Figure 1
Figure 2
Figure 3
Figure 4

Figure C1
Figure C2
Figure C3

Map of Pacifica
TRIPS Architecture

Throughput comparison of C and Java Facilitators
Effects of logging, display, and registry operations on

Facilitator throughput

List of Figures

Example Certificate Directive File

Example Applet Signing Directive File
Example HTML Document Using Signed Applet

iil

oo N —

89
90
91

1 TRIPS Overview

TRIPS, The Rochester Interactive Planning System (Ferguson and Allen, 1998) is
the latest in a series of prototype collaborative planning assistants developed at
the University of Rochester's Department of Computer Science (Allen et al., 1995;
Ferguson, Allen, and Miller, 1996; Ferguson et al., 1996). The goal of the project
is an intelligent planning assistant that interacts with its human manager using a
combination of natural language and graphical displays. The two of them col-
laborate to construct plans in crisis situations. The system understands the inter-
action as a dialogue between it and the human. The dialogue provides the con-
text for interpreting human utterances and actions, and provides the structure for
deciding what to do in response. With the human in the loop, they and the sys-
tem together can solve harder problems faster than either could solve alone.

TRIPS operates in a simplified logistics and transportation world, with cargos
being delivered using a variety of vehicles. One example scenario involves
evacuating the island of Pacifica (see Figure 1) ahead of an approaching hurri-
cane. The manager's task is to plan the evacuation, using a variety of vehicles
(with varying capabilities) at his or her disposal. There may be a variety of con-
straints placed on the final plans, such as time, cost, weather effects, and so on.

Figure 1: Map of Pacifica

TRIPS is designed as a set of loosely-coupled modules that exchange information
by passing KQML (Finin et al., 1993) messages. A schematic description of the
system is shown in Figure 2. At the top of the schematic are modality processing
modules, such speech recognition and generation, keyboard input and output,
and interactive graphical displays. Input from these modules is parsed into a uni-
form representation of the user's input as one or more communicative acts.

Map

Keyboard Microphone Mouse Menus Displays Speakers
Spelling Speech Display Speech
Correction Recognition Manager Synthesis
\ / \ / Wodaliy
. Management
Natural Language Realization &
Parsing Generation
Communicative Acts Communicative Acts
(Input) (Output)
Conversational Dialogue
Agent Management
Problem-Solving Reasoner
Agent Management

Plan Route Scheduler Simulator Temporal Network
Reasoner Planner KB Agents
Specialized Reasoners t

Figure 2: TRIPS Architecture

The middle layer in the TRIPS architecture contains the core modules of the sys-
tem, responsible for mantaining the conversation with the user and helping them
achieve their (and the system's) objectives. The Conversational Agent combines
the interpreted communicative acts from the input with the discourse context in
order to determine the intended speech acts, which might be either indirect (“Do
you know the time?”) or ambiguous (“Send the truck to Delta” when there are
two trucks). The Problem-Solving Manager plays two roles in maintaining the
dialogue. First, it helps resolve ambiguities by applying plan recognition tech-
niques. In the previous example of an ambiguous reference to “the truck,” for ex-
ample, the PSM might infer that only one truck is not already at Delta, and so the

user must be referring to it. Second, it coordinates the invocation of the special-
ized reasoners that provide solutions in service of user and system objectives.

These specialized reasoners form the bottom layer of the TRIPS architecture, and
currently include a powerful but incomplete temporal logic-based planner,
router, scheduler, temporal knowledge base, and a fast simulator with data
mining capabilities for detecting (and hopefully correcting) problems with
planned activities. The Problem-Solving Manager invokes these reasoners as ap-
propriate, and integrates their responses into the problem-solving context.

Finally, the Conversational Agent uses the results of task-specific problem-
solving (e.g., a new part of a plan, or an answer to a query) together with general
dialogue principles to determine appropriate responses. Both spoken language
and graphical displays can be generated from the intended communicative acts
specified by the Conversational Agent.

In addition to the components shown in Figure 2, TRIPS relies on extensive infra-
structure support the message-passing communication, process management,
logging, and debugging. In particular, the message-passing is implemented us-
ing a socket-based hub topology controlled by a central Facilitator (formerly In-
put Manager) module. This component provides naming services (registration
and lookup), performs complete KQML syntax validation, and supports several
types of broadcast used to disseminate information among TRIPS components.
In conjunction with its logging capabilities, it supports real-time session replay
the message traffic. Another component, the Process Manager, connects compo-
nents to the Facilitator and provides process control and status checking services.
The Process Manager allows any program that can read standard input and write
standard output to be connected into the TRIPS communication infrastructure
without any additional coding.

2 Java Reimplementation Project

In this project, we have investigated the use of the Java programming language
in the development of TRIPS, to enable remote access by users and to available
resources. The question “why Java?” is worth asking, since there is so much hype
about Java these days that just about everything is either “Java-ready” or “Java-
enabled” or what have you. For us, there are really four benefits, two general and
two more specific:

1. Platform-independence: Java holds out the promise of being a truly portable
language from the low-level programming details to the high-level look-and-
feel issues. Whether this promise is realized has yet to be seen, but initial Java
implementations and our experiments with them are promising. (When we
started this project, we were using version 1.1 of the Java Development Kit
(JDK). At the end of the project, the latest version is 1.3.)

2. Ease of Programming: All hype to the contrary, programming at the level re-
quired for TRIPS components will never be easy. However, Java is more
sanely designed than C, less confusing than C++, and less prone to error than
Perl, its closest platform-independent competitor. It also incorporates impor-

tant and powerful features from Lisp (notably garbage collection and reflec-
tion) that make large-scale, highly-dynamic programs feasible.

3. Support for Graphics: An important part of TRIPS is the combination of
graphical interaction and language. The Java Abstract Windowing Toolkit,
the Swing classes (a.k.a. JFC, the Java Foundation Classes), and recent devel-
opments such as the Java Media Framework (JMF) provide platform-
independent, relatively easy to use tools for creating graphical and multi-
modal user interfaces.

4. Support for Networking: Java provides the most convenient interface to
network programming of any language we have investigated. It also provides
the opportunity for us to refine the model of inter-module communication in
TRIPS to use object-oriented methods where these are appropriate (see be-

low).

5. Support for Security: Although security issues are not a principal concern of
our work, Java provides a powerful, well-thought-out security model for the
development of distributed applications. By using Java, we can easily lever-
age this support should security issues becomes significant in the future. The
ongoing development of the Java security model is an open process, thereby
ensuring that the best solutions are designed, tested, and deployed. This is in
marked constrast to some of the proprietary alternatives.

As described in the previous section, TRIPS is already a fully distributed, hetero-
geneous system. This will not change in the forseeable future, since Java is not
the right tool for every task, and TRIPS has modules that perform a wide variety
of different tasks. For example, Java will probably never execute efficiently
enough to use for online speech recognition, nor is it likely to provide the combi-
nation of tools and efficient compilation that we get from implementing some of
the knowledge-based modules in Lisp. In situations where graphical displays or
networking are signficant aspects of a module's function, however, Java should
provide a uniform solution to the issues involved in implementing such modules

effectively.

3 Development Plan

Our plan was to approach the development of a version of TRIPS based on Java
in two phases, in addition to peforming an ongoing evaluation of the pros and
cons of using Java.

The first phase was a redesign and reimplementation of the interface components
of TRIPS using Java. These modules include the Keyboard Manager, Speech
Controller, Audio Control Panel, Transcript, Map Viewer, and Plan Construction
Window. This provided the following benefits:

1. We were able to familiarize ourselves with the Java language and the graphi-
cal and networking aspects in particular.

2. We were able to evaluate whether Java, in its current state of development,
can support the type of applications we need in TRIPS and, if not, whether it
may in the future and we should wait, or whether we should change the de-

sign of those applications, or whether Java simply isn't a good option for
some applications.

3. We were able to develop tools that can be shared among modules, for exam-
ple, classes that make inter-module (KQML) communication easy.

4. We were able to use this opportunity to resolve outstanding problems in cur-
rent TRIPS components, add new functionality where needed, and rationalize
the implementation in places where it had gotten too ad hoc.

During this first phase of the project, we retained the underlying TRIPS commu-
nication architecture based on modules exchanging KQML messages via the Fa-
cilitator (Input Manager). We also retained the idea that modules basically read
messages from an input stream (typically derived from their standard input) and
print messages to an output stream (typically derived from their standard out-
put). Java makes several aspects of these operations simpler than they were in C
or Perl, however, as will be described in more detail in the next section.

Finally, several important components of TRIPS, such as the Discourse Manager,
Problem Solver, and Planner, were not changed. These modules are “faceless”
computation engines, and Java is probably not the appropriate tool for them, as
we noted in the previous section. The result of the first phase of the project, once
completed, will be a version of TRIPS that can be used from any Java-enabled
platform, although it will need access to the other, non-Java components of the
system over the network.

Our focus in this project was on that first phase. However, once the first phase is
complete, a second phase will look using Java's object-oriented model to effect a
much tighter integration of the TRIPS modules. Specifically, this means:

5. Explicit message-based communication will be replaced by Java Remote
Method Invocation (RMI) calls. That is, rather than sending a message re-
questing that a module perform some service, a module can simply invoke
the appropriate method on an appropriate object, and Java will look after the
distributed nature of the computation.

6. Modules not written in Java will get Java wrappers that use the Java Native
Interface (JNI) to access their functionality.

This phase of the project represents a much more radical change to the TRIPS ar-
chitecture, and it is not yet clear that this the way to go. In the first place, the
functionality of several components of TRIPS simply do not fit the object-
oriented, method-call framework. For example, when the speech recognizer has
recognized a new word, it wants to simply broadcast that fact to the world, at
least conceptually. Several other components have a similar flavour, which is de-
rived from the Al notion of a “blackboard system,” where “interesting” results
and requests are posted on a blackboard shared by all modules, and modules
“fire” when they see what they need on the blackboard. It might be possible to
implement this using Java (after all, the current Facilitator already maps “broad-
casts” to “interested” modules).

On the other hand, other aspects of TRIPS would be much easier to implement
using the RMI model. In cases where a request and reply really are functional, in

the sense that the caller wants the answer before proceeding, it is much easier to
simply make a method call than to send the message, setup state for when the
reply is received, wait for the reply, then try to restore state when it arrives. In
fact, the current version of TRIPS does this poorly, and this is an architectural
bottleneck to further development of the system.

Finally, this second phase of Java redesign has some corollary implications for
the TRIPS infrastructure. For example, it has proven invaluable to have a com-
plete log of all messages exchanged in a session. This allows us to reply a session
without running the back-end reasoners, not to mention being able to feed the
messages back to a module to get it into the right state for debugging. It is not
clear how this would work in the RMI model, although some kind of classes for
transparently logging inter-module communication could perhaps be developed.
In any case, supporting capabilities such as session replay would be challenging.

The ultimate benefit of the second phase of the TRIPS redesign would not be that
the entire system could run on a Java-enabled platform. As noted above, there
will probably always be components that are not written in Java, for various rea-
sons. However, if it was successful, the entire TRIPS system would then be open
to object-oriented interaction with other network services, such as through a
CORBA or COM interface. This would allow other systems to use TRIPS services,
and probably more importantly for us, would allow TRIPS to use other data
sources and services more transparently.

4 Accomplishments

Our accomplishments to date in the first phase of our reimplementation project
consist in porting interface components of the TRIPS system to Java. The new
components developed in this phase of the effort are now part of the TRIPS core
and have been successfully demonstrated numerous times. These include dem-
onstrations at the 1998 and 1999 AAAI Intelligent Systems Demonstrations pro-
gram, at meetings of both the ARPA-Rome Labs Planning Initiative (ARPI) and
the DARPA Control of Agent-Based Systems (CoABS) programs, at the 1999
Rome Labs Scientific Advisory Board review, and of course many demonstra-
tions for visitors and press in our labs at Rochester.

Throughout this effort, we have been compiling a list of issues involved in the
migration to Java. These include things that should work but don't, things that
work but look different, things that we need to do differently, and things that we
probably can't do at all. The Java components are being tested on Unix, Windows
95, Windows NT, and Macintosh platforms. The remainder of this section high-
lights some of the accomplishments.

4.1 Java KQML Infrastructure

We have developed a set of Java classes for reading, representing, and sending
KQML messages. These are used in the new modules, and will be developed as
necessary to support additional TRIPS components. Javadoc documentation of

these classes is presented in Appendix A.

4.2 Basic Interface Components

We have completed the reimplementation of the Keyboard, Transcript, and
Speech Controller modules. These modules were originally written in C, C++, or
Perl/ Tk and rely on the X Window System directly for their graphical displays.
The emphasis here was on the graphical aspects of Java, and whether we could
make the modules look and feel the way they should. In general the answer is
yes, although there are some differences between what we can do as a (well-
behaved) Java application (or applet; see below) and what we could do as a full-
fledged X Windows application.

For example, with raw Xlib we can “grab” the X server and receive notification of
keypress events even when the mouse pointer is outside any of the TRIPS win-
dows. This has proven useful in controlling the speech recognizer from the key-
board while using the mouse pointer for gesturing (multimodal input). There is
no way to support this (portably) in Java. We are therefore forced to develop a
new approach to handling multimodal input, essentially by moving to a con-

tinuous-listening model of speech recognition.

4.3 TRIPS Facilitator (Input Manager)

We have reimplemented the TRIPS Facilitator (ak.a. Input Manager) itself, as a
test of the networking support in Java, a test of our KQML handling, and a good
stress test of Java overall. It was not clear at the outset whether Java would be
fast enough to handle the message traffic, nor whether it could display the mes-
sage traffic as the current Input Manager does (which requires some fairly inten-
sive drawing). Initial results are very promising.

Figure 3 shows a raw throughput comparison between the original C imple-
mentation of the Facilitator and the new Java reimplementation. Times given are
averages over ten trials of the total time for one client to send the given number
of messages to one receiving client via the Facilitator, with all logging and dis-
play enabled (as would be used in the running system). It is clear that the Java
implementation clearly outperforms the C implementation except when a very
small number of messages are exchanged, where the cost of starting the Java
runtime dominates the cost of the message-passing. Further, the Java implemen-
tation is scaling significantly better as the amount of message traffic increases.
We were (pleasantly) surprised by these results. We believe that the Java imple-
mentation does better because of more efficient 1/O operations—the C imple-
mentation makes repeated single-character calls to read () (necessary to prop-
erly parse incoming asynchronous KQML), while the Java I/O classes and the
use of multiple reader threads saves the overhead of the system calls.

Figure 4 shows some other statistics regarding the Java reimplementation of the
TRIPS Facilitator. These times are averages over ten trials to send and receive
10,000 messages under different configurations. The first category is the same as
the rightmost category of Figure 3, namely the default configuration with both
logging and display enabled. The second and third categories show the effect of
disabling the log and disbling both the log and the display, respectively. For
neither the C nor the Java implementation do these have a large effect on system
throughput, which is a very positive result. The final category in Figure 4 shows

7

how the performance differs if ten clients are sending to each other in a round-
robin fashion, rather than the one-to-one configuration used in all the other trials.
The results show that there are no adverse effects from the repeated registry

lookups (we expected this, but there might have been cache effects).

200000 181314

180000

160000

140000

120000

100000

80000

C
W Java

Total Time (ms)

60000
40000
20000

0

426 546

100 5000 10000

Number of Messages

Figure 3: Throughput comparison of C and Java Facilitators

250000

200000

150000 - oC

BJava

100000 4— -

Total Time (ms)

50000 +—

O . . .
Log and Display Nolog, no Ten clients
Display only display

10000 Messages

Figure 4: Effects of logging, display, and registry operations on Facilitator
throughput

4.4 Applets and the “Java Desktop”

Java supports both standalone applications and lighter-weight “applets” that run
in the context of a larger application (typically a web browser). This section
briefly describes our work towards the design and implementation of TRIPS
components as applets that run on a “Java Desktop” on any Java-enabled plat-
form. The goal of this part of the project is to allow TRIPS to be accessed from
their web browser. The interface components started on this Java Desktop would
be connected to the rest of the TRIPS system using standard network connections
to the TRIPS Facilitator (Input Manager). Since not all components have yet been
ported to Java (and, indeed, it seems unlikely that some of them ever would be),
it is important that Java support the existing TRIPS communication architecture.

As a first feasibility test of Java applets for TRIPS interface components, we con-
verted our Keyboard Manager module, a Java application, into an applet. This
conversion is fairly straightforward, but we have developed tools to make it even
easier in the future. As a practical matter, it is very convenient to be able to run
TRIPS components as either applications or applets. In particular, it is easier to
debug standalone Java applications than to debug applets running in a browser
that was not designed for their debugging. The TripsApplet classes we devel-
oped to support this dual usage are documented in Appendix B. The result of
this work is that all interface components written in Java can be invoked as either
applications or applets. As new components are developed using Java, they will
automatically have this functionality also.

Three issues are worth mentioning regarding the use of applets in TRIPS (and
more generally).

1. First, it is really very simple to do. The boilerplate included in Appendix B,
Section B.3, can be used to turn any applet into an application. Our support
classes look after hiding many of the differences between applets and appli-
cations, such as where their invocation parameters come from (PARAM tags
for applets, command-line arguments via the String[] parameter to the
main method for applications).

2. Second, while Java promises write-once, run—anywhere code, and Java-
enabled browsers promise a Java environment on any platform, attempting to
use a browser as one's Java environment is risky business. The main reason is
that browser development typically lags the development of Java as a whole.
Recent, often powerful, features of Java are typically missing from the version
of Java supported by a browser. Netscape is particularly bad in this respect;
Internet Explorer at least has a provision for using another installed Java
Runtime Environment (JRE). The solution we have found is to use the so-
called “Java Plug-in” available from Javasoft, which allows applets to run
using another JRE installed on the machine. This way applets can be run
against the latest version of the JRE available from Javasoft. Eventually one
can hope that this situation will improve, but meanwhile there is still this one
requirement on clients that would hope to access the Java Desktop from their
browser.

3. Finally, there are security issues. Specifically, applets run from a browser are
flagged as “insecure” by the browser. These insecure applets are displayed

with a (deliberately) distracting titlebar, and they lack some of the capabilities
of applications. We therefore investigated the use of so-called “signed” app-
lets for use with TRIPS, both to preserve the aesthetic quality of the user inter-
face and to enable the socket-based connections on which the TRIPS commu-
nication infrastructure depends. At this point, it is safe to say only that the
situation is in flux. Our notes on signing an applet (providing it with an en-
crypted authorization) in the Java 1.1 model are presented in Appendix C.
Towards the end of this project, Java 1.2 (ak.a. “Java2”) was released, and
promised a much cleaner implementation of the applet signing process.

In the end, the results of our initial efforts with applets for TRIPS were very
promising. Their functionality was essentially identical to applications, including
tricky issues like window placement and supporting multiple frames. Running
multiple applets rather than multiple applications avoids starting several large
Unix processes, one for each Java Runtime Environment. (On the other hand,
actually obtaining that benefit requires an efficient implementation of threads in
the JRE, something which until fairly recently was not reliably available.)

4.5 Remote Audio Using Java Sound

Audio has always been a problem for TRIPS. It is, of course, essential for a
speech-based interactive system to be able to receive audio input from the user
for use in speech recognition and to produce audio output in the form of system-
generated speech. Unfortunately, whereas the X Window System is a mature,
freely-available system for networked graphics, there is no such accepted stan-
dard for audio. After investigating several alternatives, we originally settled on
the use of the AudioFile system for managing networked audio resources in
TRIPS. AudioFile was developed by DEC and is based on the design (and much
of the code) of the X Window System.

Just as Java promises a portable graphical environment through its graphical in-
terface classes, about halfway through the project, the first release of the Java
Sound API was released, promising equally portable access to the audio capa-
bilities of a platform.. At that point, version 0.86, it was poorly documented,
somewhat strangely designed, and barely useable, although we spent some time
trying to get it working to provide platform-independent audio for use in TRIPS.
Working on both a Windows NT machine and our Suns, we implemented remote
object versions of Java Sound objects (using Java RMI) to transfer audio across a
network (essential to enable remote access). Then there was a major rewrite of
the package early this year, which we switched to in the hopes that it would im-
prove the functionality.

Now it seems that the Java Sound API is being rolled into the Java Media
Framework (JMF), which is being touted as the solution to cross-platform use of
multimedia resources such as audio and video. This standard is still in its infancy
(for example, the 1.0 version supports only playing audio files on client ma-
chines; the 2.0 version is only supported as part of the JDK1.3). This is therefore a
moving target, and in fact some needed functionality is simply not yet imple-
mented (such as rate conversion, which we did some work on ourselves in an ef-
fort to compensate). We are confident, however, that once the standards settle

10

down we can use the expertise we developed while working with the earlier ver-
sions to enable remote access to a platform’s audio resources in a standard way.

4.6 Portable Access to TRIPS via Tablet Computer

One of the goals of the audio work described in the previous section was to sup-
port access to TRIPS by a remote user with a tablet computer connected via
wireless network. The platform we were investigating was a Fujitsu Stylistic 1200
obtained as part of another project. We felt that this would make a good target
and a nice demo for some of the work on remote access using Java that we were
doing in this project.

Unfortunately, the tablet was extremely difficult to use. First, even installing and
configuring Windows NT was difficult. The lack of any fixed drive (floppy,
cdrom, whatever) made life much harder. We were told by the vendor that if the
drive in the machine died or we needed to reinstall Windows for some reason,
that it would have to be sent back to the factory! Working carefully, we managed
to get the audio capabilities of the tablet turned on as far as Windows was con-
cerned (that is, Windows could play and record sounds). The Fujitsu appeared to
use some kind of SoundBlaster-compatible audio system, although we couldn’t
be sure exactly what was going on. There was no documentation, of course.

Next, in order to make the tablet a viable interface device for TRIPS, we needed
to support audio input and output from the tablet. TRIPS is fundamentally about
conversation, so spoken language is an essential aspect of the interaction be-
tween the human and the system. As noted above, it is unlikely that we could (or
would want to) run the speech recognition or speech synthesis systems on the
tablet. So, as described in the previous section, we planned to use the network to
ship the audio to and from another workstation using remote versions of Java
Sound objects connected to the speech recognition and synthesis engines on the
remote machine. This would require some integration between those engines,
written in C (and a commercial, non-source program in the case of TrueTalk) and
the Java Sound objects, but we felt we could handle that.

Unfortunately, it turned out that the Fujitsu tablet was simply not up to the job. It
was already underpowered (Pentium 1), low on memory (requiring proprietary
modules to upgrade), and had a small screen (640x480). Still, it might have
worked as proof of concept. But the Java Sound package simply didn't work
properly, so far as we could tell, with the audio hardware in the tablet. We spent
many long nights trying to make it work, but to no avail. Perhaps with newer
versions of the Java Sound or JMF classes it would work, but on the other hand,
those classes require the even greater overhead of newer version of the JDK,
which would likely overwhelm the Fujitsu. A newer version of the tablet has
been released (the Stylistic 2300). If we were to get our hands on one of those, I
think we could make a very effective version of TRIPS that used the Java ver-
sions of the interface components and Java Sound /JME for audio to enable truly
portable remote access to TRIPS.

11

5 Future Work

The results of our work on using Java to provide remote access to TRIPS have
been very successful, but some work remains to be done. In this section we touch
briefly on some of the more interesting issues.

¢ Our work with applets and the TripsApplet class described in Appendix B
provide a solid foundation for developing dual-purpose (applet/ application)
components for TRIPS. We need to complete the implementation of the “Java
Desktop” to support simple and effective use of these applets from web
browsers. In effect, we need to build a “Java Window Manager” that can
manage the various windows put up by our applets, and provide control of
and coordination between them.

e Several interface components are not yet ported to Java. These include in
particular the Map Viewer and Plan Construction Window. Given the work
described in this report, there are no major technical reasons why this can’t be
completed. However, these are fairly large, fairly complex programs, and
even a fairly straightforward port will take time.

e We are continuing our work on using the Java Media Framework to provide
audio support for TRIPS components. As noted above, this is unfortunately a
moving target. Two separate issues need to be addressed:

« First, we need to be able to use the JMF’s platform-independent support of
audio input and output to connect our existing speech recognition and
speech synthesis components to the audio resources of a remote platform.

e Second, we are investigating using the Java Speech API (part of the JMF)
to connect our TRIPS components to the speech recognition and synthesis
engines themselves. This would allow us to plug in new speech engines,
perhaps remote ones, for example, on platforms on which our current en-
gines are not available. We have done fairly extensive work on develop-
ment of JSAPI classes (which are not part of the JavaSoft distribution). We
have connected these to our TrueTalk speech synthesizer and will also
connect them to our Sphinx-II speech recognizer (via JNI, the Java Native
Interface). This is a complicated process, but the results would enable
much easier remote access to TRIPS if we could interface directly to COTS
speech engines on a remote platform.

e Finally, we would like to revisit the issue of supporting a remote TRIPS user
on a portable platform. As noted above, our opinion of the Fujitsu 1200 was
quite negative. However, there are newer machines than that available now,
and wireless networking has also become much simpler and more affordable.
The idea behind TRIPS, namely that the user is carrying on a conversation
with the user, should be applicable in a wide range of situations where the
user is connected to the system in more or less powerful ways (for example,
from cell phone to high-powered laptop).

12

6 Conclusions

We have made good progress towards the goal of enabling remote access to
TRIPS by adopting the Java platform for interface development. When we
started, we weren’t even sure that Java was a practical alternative for system de-
velopment. This project has enabled us to experiment with and validate a large
number of Java technologies, including:

1. Basic language features
2. User interface components, design, and functionality

3. Networking and other capabilities for KQML message-passing interaction
with the rest of TRIPS via the TRIPS Input Manager (facilitator)

4. Reimplementation of existing TRIPS components in Java, and development of
infrastructure to support future component development

5. The Java security model and the applet signing process for privileged execu-
tion of applets on remote hosts

6. Access to audio resources in a platform-independent manner via the Java
Sound classes

7. Remote access to Java objects via the Java Remote Method Invocation (RMI)
facilities

8. Integration of legacy and COTS programs with Java components via the Java
Native Interface (JNI) specification

9. Provision and use of speech recognition and synthesis capabilities through an
implementation of the Java Speech API connected to the Sphinx-II recognizer
and TrueTalk synthesizer (both commercial products)

10. Use of Java on a portable tablet computer connected via wireless LAN
11. Changes to TRIPS to support a user interacting via the tablet computer

Clearly Java was the right choice for the future, and the support under this pro-
ject was crucial to the development of the next generation of TRIPS.

7 References

[Allen, et al., 1995] James F. Allen, Lenhart K. Schubert, George Ferguson, Peter
Heeman, Chung Hee Hwang, Tsuneaki Kato, Marc Light, Nathaniel G.
Martin, Bradford W. Miller, Massimo Poesio, and David R. Traum, “The
TRAINS Project: A case study in defining a conversational planning
agent,” Journal of Experimental and Theoretical Al 7:7-48, 1995.

[Ferguson and Allen, 1998] George Ferguson and James F. Allen, “TRIPS: An
Integrated Intelligent Problem-Solving Assistant,” In Proceedings of the Fif-
teenth National Conference on Artificial Intelligence (AAAI-98), Madison, WI,
27-30 July 1998.

[Ferguson, Allen, and Miller, 1996] George Ferguson, James Allen, and Brad
Miller, “TRAINS-95: Towards a Mixed-Initiative Planning Assistant,” In

13

Brian Drabble, editor, Proceedings of the Third Conference on Artificial Intelli-
gence Planning Systems (AIPS-96), pages 70--77, Edinburgh, Scotland, 29-31
May 1996.

[Ferguson et al., 1996] George Ferguson, James F. Allen, Brad W. Miller, and Eric
K. Ringger, “The Design and Implementation of the TRAINS-96 System: A
Prototype Mixed-Initiative Planning Assistant,” TRAINS Technical Note
96-5, Department of Computer Science, University of Rochester, Roches-
ter, NY, October 1996.

[Finin et al., 1993] Tim Finin, Jay Weber, Gio Wiederhold, Michael Genesereth,
Richard Fritzson, Donald McKay, James McGuire, Richard Pelavin, Stuart
Shapiro, and Chris Beck, “Specification of the KQML Agent-
Communication Language,” draft, 15 June 1993.

14

A. Documentation for Package TRIPS.KQML

Interface Summary

KQMI Receiver

IClass Summary

KOMLList Class representing KQML lists.
. lass for all KQML objects (KQMLPerformative,
ase clas
KOMLObject KOMLList, etc.).

[KOMLPerformative |A class representing KQML performatives.

KOMLQuotation A class representation quotations in KQML.

KOMLReader A class for reading KQML performatives from an InputStream.

KQOMLReaderThread

IKOMLString A class representing KQML strings.

Exception Summary

KOMLBadCharacterException

Thrown when a non-KQML character is read.

I(QMLBadCloseException

Thrown when a closing parenthesis was ex-
pected but not read.

KOMLBadCommaException

Thrown when a comma is read outside of a
backquoted expression.

KOMLBadHashException

Thrown when an illegal ““hashed string"” syntax
s detected (it should be “"#™".

KOMLBadOpenException

Thrown when an open parenthesis was read
when one was not expected.

K(2MLBadPerformativeException

Thrown when the expression read is not a per-
lformative (or actually, not a list, since we don't
check that it's actually a verb followed by key-
word / value pairs).

KQOMLException

Parent class of all exceptions thrown during
KQML 1/0.

KOMLExpectedWhitespaceException

Thrown when whitespace is expected but
Fomething else is read.

15

A.1. Interface KQMLReceiver

public abstract

interface KQMLReceiver

Method

Summary

void

receiveAchieve (KQMLPerformative msg, java.lang.Object content)

void

receiveadvertise (KQMLPerformative msg, java.lang.Object content)

void

[receiveAskall (KOMLPerformative msg, java.lang.Object content)

void

receiveAskIf (KQMLPerformative msg, java.lang.Object content)

void

FeceiveAskOne (KOMLPerformative msg, java.lang.Object content)

void

receiveBroadcast (KQMLPerformative msg, java.lang.Object content)

void

receiveBrokerAll (KQOMLPerformative msg, java.lang.Object content)

void

receiveBrokerOne (KQMLPerformative msg, java.lang.Object content)

void

receiveDeleteAll (KQMLPerformative msg, Jjava.lang.Object content)

void

receiveDeleteOne (KQMLPerformative msg, java.lang.Object content)

void

receiveDeny (KQOMLPerformative msg, java.lang.Object content)

void

receiveDiscard (KOMLPerformative msg)

void

receiveEOF ()

void

raceiveEos (KQMLPerformative msg)

void

receiveError (KQMLPerformative msg)

void

receiveForward (KOMLPerformative msg, java.lang.Object content)

void

receiveInsert (KQMLPerformative msg, java.lang.Object content)

void

receiveMessageMissingContent (KQMLPexrformative msg)

void

receiveMessggeMissingVerb(KQMLPerformative msg)

void

receiveNext (KQMLPerformative msg)

16

voidreceiveOtherPerformative(KQMLPerformative msg)

void|receiveReady (KOMLPerformative msg)

voidreceiveRecommendAll(KQMLPerformative msg,
java.lang.Object content)

voidreceiveRecommendOne(KQMLPerformative msg,
java.lang.Object content)

voidreceiveRecruitAll(KQMLPerformative msg, java.lang.Object content)

voidreceiveRecruitOne(KQMLPerformative msg, java.lang.Object content)

voidreceiveRegister(KQMLPerformative msg, java.lang.Object content)

voidreceiveReglx(KQMLPerformative msg, java.lang.Object content)

voidreceiveRequest(KQMLPerformative msg, java.lang.Object content)

voidlreceiveRest (KQMLPerformative msg)

voidlreceiveSorry (KOMLPerformative msg)

voidireceiveStandby (KQMLPerformative msg, java.lang.Object content)

voidreceiveStreamall (KQMLPerformative msg, java.lang.Object content)

voidreceiveSubscribe(KQMLPerformative msg, java.lang.Object content)

voidireceiveTell (KQMLPerformative msg, java.lang.Object content)

voidreceiveTransportAddress(KQMLPerformative msg,
java.lang.Object content)

voidlreceiveUnachieve (KQMLPerformative msg, java.lang.Object content)

voidreceiveUnadvertise(KQMLPerformative msg,
java.lang.Object content)

voidreceiveUndelete(KQMLPerformative msg, java.lang.Object content)

voidreceiveUninsert(KQMLPerformative msg, java.lang.Object content)

voidreceiveUnregister(KQMLPerformative msg)

voidreceiveUntell(KQMLPerformative msg, java.lang.Object content)

17

Method Detail

receiveEOF

public void receiveEOF ()

receiveMessageMissingVerb

public void receiveMessageMissingVerb (KQMLPerformative msg)

receiveMessageMissingContent

public void receiveMessageMissingContent (KQMLPerformative msg)

receiveAskIf

public void receiveAskIf (KQMLPerformative msg,
java.lang.Object content)

receiveAskAll

public void receiveAskall (KQMLPerformative msg,
java.lang.Object content)

receiveAskOne

public void receiveAskOne (KQMLPerformative msg,
java.lang.Object content)

18

receiveStreamAll

public void receiveStreamall (KOMLPerformative msg,
java.lang.Object content)

receiveTell

public wvoid receiveTell (KOMLPerformative msg,
java.lang.Object content)

receiveUntell

public void receiveUntell (KQMLPerformative msg,
: java.lang.Object content)

receiveDeny

public void receiveDeny (KOMLPerformative msg,
java.lang.Object content)

receivelnsert

public void receiveInsert (KQMLPerformative msg,
java.lang.Object content)

receiveUninsert

public void receiveUninsert (KQMLPerformative msg,
java.lang.Object content)

receiveDeleteOne

public void receiveDeleteOne (KQMLPerformative msg,
java.lang.Object content)

19

receiveDeleteAll

public void receiveDeleteall (KOMLPerformative msg,
java.lang.Object content)

receiveUndelete

public void receiveUndelete (KOMLPerformative msg,
java.lang.Object content)

receiveAchieve

public void receiveAchieve (KQMLPerformative msg,
java.lang.Object content)

receiveUnachieve

public void receiveUnachieve (KQMLPerformative msg,
java.lang.Object content)

receiveAdvertise

public void receiveAdvertise (KQMLPerformative msg,
java.lang.Object content)

receiveUnadvertise

public void receiveUnadvertise (KQMLPerformative msg,
java.lang.Object content)

receiveSubscribe

public void receiveSubscribe (KQMLPerformative msg,

20

java.lang.Object content)

receiveStandby

public void receiveStandby(KQMLPerformative msg,
java.lang.Object content)

receiveRegister

public void receiveRegister(KQMLPerformative msg,
java.lang.Object content)

receiveForward

public void receiveForward(KQMLPerformative msg,
java.lang.Object content)

receiveBroadcast

public void receiveBroadcast(KQMLPerformative msg,
java.lang.Object content)

receiveTransportAddress

public void receiveTransportAddress(KQMLPerformative msdg,
java.lang.Object content)

receiveBrokerOne

public void receiveBrokerOne(KQMLPerformative mnsg,
java.lang.Object content)

21

receiveBrokerAll

public void receiveBrokerall (KQMLPerformative msg,
java.lang.Object content)

receiveRecommendOne

public void receiveRecommendOne (KQMLPerformative msg,
java.lang.Object content)

receiveRecommendAll

public void receiveRecommendAll (KQMLPerformative msg,
java.lang.Object content)

receiveRecruitOne

public void receiveRecruitOne (KQMLPerformative msg,
java.lang.Object content)

receiveRecruitAll

public void receiveRecruitAll (KQMLPerformative msg,
java.lang.Object content)

receiveReply

public void receiveReply (KQMLPerformative msg,
java.lang.Object content)

receiveRequest

public void receiveRequest (KQMLPerformative msg,
java.lang.Object content)

22

receiveEos

public void receiveEos (KQMLPerformative msg)

receiveError

public void receiveError(KQMLPerformative msg)

receiveSorry

public wvoid receiveSorry(KQMLPerformative msg)

receiveReady

public void receiveReady (KQMLPerformative msg)

receiveNext

public void receiveNext (KQMLPerformative msg)

receiveRest

public void receiveRest (KQMLPerformative msg)

receiveDiscard

public wvoid receiveDiscard (KQMLPerformative msg)

23

receiveUnregister

public void receiveUnregister (KQMLPerformative msg)

receiveOtherPerformative

public void receiveOtherPerformative (KQMLPerformative msg)

24

A.2. Class

KQMLList

java.lang.Object

+--TRIPS.

KOML . KQMLObject

+--TRIPS.KQML .KQMLList

public class KQMLList

extends KQMIL Object .

Class representing KQML lists. These are really just Vectors that print nicely using
KQML syntax.

See Also:

KQMLReadex

IConstructor Summary

MLList ()
Returns a new empty KQMLList.

FQMLList(java.lang.Object al)

FQMLList(java.lang.object al, java.lang.Object a2)

&§MLList(java.lang.Object al, java.lang.Object az,
Java.lang.Object a3)

gMLList(java.lang.Object al, java.lang.Object az,
java.lang.Object a3, java.lang.Object ad)

gMLList(java.lang.Object al, java.lang.Object az,
java.lang.Object a3, java.lang.Object a4, java.lang.Object ab)

Method Summary

voidhdd(java.lang.object obJj)

Adds an element to the end of a KQMLList.

java.lang
.Object

etKeywordArg (java.lang.String keyword)
Returns the object following the given keyword in the list.

voidinsertAt (java.lang.Object obj, int index)

Tnserts an element at the given index of an KQMLList.

int

length ()
Returns the length of a KQMLList.

java.lang
.Object

nth (int n)
Returns the requested element of a KQMLList.

25

voidjpush (java.lang.Object obj)
Adds an element to the front a KQMLList.

voidjremoveAt (int index)
Removes the element at the given index of an KQMLList.

java.lang ftoString()
.String Returns a KQMLList as a String in KQML syntax.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAall, wait, wait,
wait

Constructor Detail

KQMLList

public RQMLList ()
Returns a new empty KQMLList.
See Also:

KQMLPerformative, KQMLReader

KQMLList

public KQMLList (java.lang.Object al)

KQMLList

public RQMLList (java.lang.Object al,
java.lang.Object a2)

KQMLList

public RQMLList (java.lang.Object al,
java.lang.Object a2z,
java.lang.Object a3)

KQMLList

26

public KQMLList (java.lang.Object al,
java.lang.Object a2,
java.lang.Object a3,
java.lang.Object a4)

KQMLList

public KQMLList (java.lang.Object al,
java.lang.Object a2,
java.lang.Object a3,
java.lang.Object a4,
java.lang.Object ab)

| Method Detail

add

public void add(java.lang.Object obj)
Adds an element to the end of a KQMLList.

Parameters:

obj - Object to add

push

public void push (java.lang.Object obj)
Adds an element to the front a KQMLList.

Parameters:

obj - Object to add

insertAt

public wvoid insertAt (java.lang.Object obj,
int index)

Inserts an element at the given index of an KQMLList.
Parameters:

obj - Object to add

27

index - Index at which to insert

removeAt

public void removeat (int index)

Removes the element at the given index of an KQMLList.
Parameters:

index - Index at which to delete

nth

public java.lang.Object nth(int n)
Returns the requested element of a KQMLList.

Parameters:
n - Index of object
Returns:

Object at that index

length

public int length()
Returns the length of a KQMILList.

Returns:

Length of list

getKeywordArg

public java.lang.Object getKeywordArg (java.lang.String keyword)

Returns the object following the given keyword in the list. Uses case-insensitive
matching on the keyword.

Parameters:

28

keyword - Name of parameter (including colon)
Returns:
Value of parameter (String, KQMLString, KQMLQuotation, or KQMLList)

See Also:

String,KQMLStrigg,KQMLQuotation,KQMLList

toString

public java.lang.String tosString ()
Returns a KQMLList as a String in KQML syntax.

Returns:
String denoting KQMLList
Overrides:

toString in class java.lang.Object

29

A.3. Class KQMLODbject

java.lang.Object

|

+--TRIPS.KQML.KQMLObject

Direct Known Subclasses:

KOQMI List, KOMI Performative, KQMI Quotation, K¢ ML.String

public class KQMLODbject
extends java.lang.Object
Base class for all KQML objects (KQMLPerformative, KQMLList, etc.).

See Also:
KQMLReader

|Constructor Summary
KQMLObject ()

ethods inherited from class java.lang.Object)
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail

KQMLObject

public RQMLObject ()

30

A.4. Class KQMLPerformative

java.lang.Object

+--TRIPS.KQML.KQMLObject

+--TRIPS.KQML .KQMLPerformative

public class KQMLPerformative
extends KQMIL Object

A class representing KQML performatives. This is really just a Vector with methods for
getting at the verb and parameters of the performative.

See Also:

KOMLReader

[Constructor Summary

&QMLPerformative(KQMLList list)
| Creates a new performative from the given list.

MLPerformative (java.lang.String verb)
Creates a new performative with the given verb (and no parame-

ers).

Method Summary

java.lang. etParameter (java.lang.String keyword)
Object Returns the requested parameter of the performative.

java.lang. jgetVerb()
string Returns the verb of the performative as a String.

voidhetparameter(java.lang.String keyword, java.lang.Object value)
[Sets the given parameter of the performative.

java.lang. jtoString()
String Returns the performative as a String.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyall, wait, wait,
ait

Constructor Detail

KQMLPerformative

31

public KOMLPerformative (java.lang.String verb)

Creates a new performative with the given verb (and no parameters).

Parameters:

str - The verb of the performative

KQMLPerformative

public KQMLPerformative (KQMLList list)

Creates a new performative from the given list. Note that this constructor does not
currently check that the elements of the list are in fact a verb followed by
keyword/value pairs.

Parameters:

1ist - KQMLList containing elements of the performative.

Method Detail

getVerb

public java.lang.String getVerb()
Returns the verb of the performative as a String.

Returns:

Verb of performative

getParameter

public java.lang.Object getParameter (java.lang.String keyword)

Returns the requested parameter of the performative. The case of the given keyword is
ignored.

Parameters:

keyword - Name of parameter (including colon)

Returns:

Value of parameter (String, KQMLString, KQMLQuotation, or KQMLList)

32

See Also:

String,KQMLString,KQMLQuotation,KQMLList

setParameter

public void setParameter (java.lang.String keyword,
java.lang.Object value)

Sets the given parameter of the performative.
Parameters:

keyword - Name of parameter (including colon)

value - Value of parameter (String, KQMLString, KQMLQuotation, or KQMLList)
See Also:

String,KQMLStrigg,KQMLQuotation,KQMLList

toString

public java.lang.String tostring ()

Returns the performative as a String.
Returns:

String suitable for printing as KQML
Overrides:

toString in class java.lang.Object

33

A.5. Class KQMLQuotation

java.lang.Object

+--TRIPS.KQML .KQMLObject

+--TRIPS.KQML.RKQMLQuotation

public class KQMLQuotation
extends KQMI Object

A class representation quotations in KQML. These are expressions preceded by a quote,
backquote, or comma (the ““type" of the quotation).

See Also:

KQMLPerformative, KQMLReader

Constructor Summary

RgMLQuotation(char t, java.lang.Object obj)
Returns a new KQMLQuotation consisting of the given elemnts.

Method Summary

java.lang. jgetObject ()
Object Returns the object being quoted.

chariget e()
Returns the type of the quotation.

java.lang. jtoString()
String Returns a KQMLQuotation as a String in KQML syntax.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyall, wait, wait,
wait

|Constructor Detail

KQMLQuotation

public KQMLQuotation(char t,
java.lang.Object obj)

Returns a new KQMLQuotation consisting of the given elemnts.

34

Parameters:
¢ - Type of quotation (quote, backquote, or comma)

obj - Object being quoted (String, KQMLString, KQMLQuotation, or KQMLList)

Method Detail

getType

public char getType()
Returns the type of the quotation.

Returns:

Type of quotation (quote, backquote, or comma)

getObject

public java.lang.Object getObject ()
Returns the object being quoted.

Returns:

Object being quoted (String, KQMLString, KQMLQuotation, or KQMLList)

toString

public java.lang.String toString()
Returns a KQMLQuotation as a String in KQML syntax.

Returns:
String denoting KQMLQuotation
Overrides:

toString in class java.Jang.Object

35

A.6. Class KQMLReader

java.lang.Object

I

+-~java.io.Reader

l

+--java.io.InputStreamReader

+--TRIPS.RKQML.KQMLReader

public class KQMLReader
extends java.io.InputStreamReader

A class for reading KQML performatives from an InputStream. For example:

KQMLReader in = new KOMLReader (socket.getInputStream());

See Also:

KQMLPerformative

Fields inherited from class java.io.Reader

lock

IConstructor Summary

MLReader (java.io.InputStream s)
Creates a new stream from which to read KQML Performatives.

Method Summary

static voidmain(java.lang.String{] a)
For testing.

intjread ()

KQMLPerformativereadPerformative()
Reads a performative.

Methods inherited from class java.io.InputStreamReader

close, getEncoding, read, ready

Methods inherited from class java.io.Reader

mark, markSupported, read, reset, skip

ethods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyall,

toString,

36

Eait, wait, wait

[Constructor Detail

KQMLReader

public KQMLReader (java.io.InputStream s)

Creates a new stream from which to read KQML Performatives.
Parameters:
s - InputStream from which to read

See Also:

InputStream

Method Detail

read

public int read()
throws java.io.IOException

Overrides:

read in class java.io.InputStreamReader

readPerformative

public KOMLPerformative readPerformative ()
throws java.io.IOException

Reads a performative.
Returns:
Next performative from input stream
Throws:
KOQMLException - If the input is not proper KQML.
java.io.EOFException - If EOF is reached.

37

java.io.IOException - For any other I/O error.

main

public static void main(java.lang.Stringl[] a)

For testing.

38

A.7. Class KOMLReaderThread

java.lang.Object

I

+--java.lang.Thread

|

+——TRIPS.KQML.KQMLReaderThread

public class KQMLReaderThread

extends java.lang.Thread

Field Summary

protected KOMLReader ireader

protected KOMLReceiverijreceiver

protected booleanistopped

protected booleanjsuspended

Fields inherited from class java.lang.Thread

LMAX_PRIORITY, MIN_PRIORITY, NORM_PRIORITY

Constructor Summary

QMLReaderThread(KQMLReceiver rec, KQMLReader in)

Method Summary

protected voidlreceive (KOMLPerformative mnsg)

voidijrun ()

voidlstopSafely ()

voidjsuspendsafely ()

[Methods inherited from class java.lang.Thread

39

sctiveCount, checkAccess, countStackFrames, currentThread, destroy, dump-
Stack, enumerate, getContextClasslLoader, getName, getPriority, getThread-
sroup, interrupt, interrupted, isAlive, isDaemon, isInterrupted, join, join,
join, resume, setContextClassLoader, setDaemon, setName, setPriority, sleep,
sleep, start, stop, stop, suspend, toString, yield

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyall, wait, wait,
wait

Field Detail

receiver

protected KQMLReceiver receiver

reader

protected KQMLReader reader

stopped

protected volatile boolean stopped

suspended

protected volatile boolean suspended

Constructor Detail

KQMLReaderThread

public KQMLReaderThread (KQMLReceiver rec,

40

KQMLReader in)

Method Detail

run

public void run()

Overrides:

run in class java.lang.Thread

stopSafely

public void stopSafely()

suspendSafely

public void suspendSafely ()

receive

protected void receive (KQMLPerformative msg)

41

A.8. Class KQMLString

java.lang.Object

+--TRIPS.

KOML . KOMLObject

+--TRIPS.KQML.RKQMLString

public class KQMLString
extends KQMI Object

A class representing KQML strings. These are just regular strings that print themselves
using KQML syntax.

See Also:

KQMLPerformative, KQMLReadex

IConstructor Summary

)

MLStrin
Creates a new empty KQMLString.

MLStrin
Creates a new KQMLString with the given contents.

(java.lang.String s)

Method Summary

int

charAt (int n)
Returns the character at a given index in a KQMLString.

int

length ()
Returns the number of characters in a KQMLString.

java.lan istringValue()

Returns the String content of a KQMLString (no extra quotes).

g.String

g.String
java.lan jtoString()

Returns a KQMLString as a String in KQOML syntax.

Methods inherited from class java.lang.Object

wait

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait,

Constructor Detail

KQMLString

42

public KQMLString ()

Creates a new empty KQMLString.

KQMLString
public RQMLString(java.lang.String s)

Creates a new KQMLString with the given contents.
Parameters:

s - Contents of string.

Method Detail

length

public int length()
Returns the number of characters in a KQMLString.

Returns:

Length of KQMLString

charAt

public int charAt(int n)

Returns the character at a given index in a KQMLString.
Parameters:

n - Index of character
Returns:

Character at that index

toString

public java.lang.String tostring ()
Returns 2 KQMLString as a String in KQML syntax.

43

Returns:
String denoting KQMLString
Overrides:

toString in class java.lang.Object

stringValue

public java.lang.String stringValue()

Returns the String content of a KQMLString (no extra quotes).

Returns:

String contents of KQMLString

A.9. Class KQMLBadCharacterException

java.lang.Object

+--java.lang.Throwable

l

+--java.lang.Exception

+--java.io.IOException

l

+--TRIPS.KQML .KQMLException

+——TRIPS.KQML.KQMLBadCharacterException

public class KQMLBadCharacterException
extends KQMLException

Thrown when a non-KQML character is read.
See Also:

KQMLReader, Serialized Form

Method Summary

java.lang.StringtoString()

[Methods inherited from class java.lang. Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, print-
StackTrace, printStackTrace

[Methods inherited from class java.lang.Object

tlone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait,
ait

Method Detail

toString

public java.lang.String toString()

Overrides:

toString in class java.lang. Throwable

45/46

A.10. Class KQMLBadCloseException

java.lang.Object

|

+--java.lang.Throwable

I

+--java.lang.Exception

+--java.io.IOException

+--TRIPS.KOML.KQMLException

+——TRIPS.KQML.KQMLBadCloseException

public class KQMLBadCloseException
extends KQMIException

Thrown when a closing parenthesis was expected but not read. (In fact, this should never
be thrown, but...)

See Also:

KOMLReader, Serialized Form

Method Summary

java.lang.StringjtoString ()

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, print-
StackTrace, printStackTrace

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait,
wait

Method Detail

toString

public java.lang.String toString()

Overrides:

toString in class java.lang. Throwable

47/48

A.11. Class KQMLBadCommaException

java.lang.Object

+--java.lang.Throwable

|

+--java.lang.Exception

+--java.io.IOException

+--TRIPS.KOML.KQMLException

+--TRIPS.KQML.KQMLBadCommaException

public class KQMLBadCommaException
extends KQMLException

Thrown when a comma is read outside of a backquoted expression.

See Also:

KOMLReader, Serialized Form

Method Summary

java.lang.String:oString()

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, print-
stackTrace, printStackTrace

Wethods inherited from class java.lang.Object

tlone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait,
ait

Method Detail

toString

public java.lang.String toString()

Overrides:

toString in class java.lang.Throwable

49/50

A.12. Class KQMLBadHashException

java.lang.Object

+--java.lang.Throwable

|

+--java.lang.Exception

+--java.io.IOException

+--TRIPS.KQML.KQMLException

+-—TRIPS.KQML.KQMLBadHashException

public class KQMLBadHashException

extends KOMLException

Thrown when an illegal *“hashed string" syntax is detected (it should be ““#"". This is
usually caused by a hash (pound) character getting into the input by accident, since
hashed strings are rarely used. They can be printed by Lisp, for example, when printing
structures without print functions.

See Also:

KOMLReader, Serialized Form

Method Summary

java.lang.StringjtoString ()

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, print-
StackTrace, printStackTrace

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait,
wait

Method Detail

toString

public java.lang.String toString ()

Overrides:

51

toString in class java.lang. Throwable

52

A.13. Class KOMLBadOpenException

java.lang.Object

+--java.lang.Throwable

l

+--java.lang.Exception

+--java.io.IOException

|

+--TRIPS.KQML.KQMLException

+——TRIPS.KQML.KQMLBadOpenException

public class KQMLBadOpenException
extends KQMLException

Thrown when an open parenthesis was read when one was not expected. (In fact, this
should never be thrown...)

See Also:

KOMLReader, Serialized Form

Method Summary

java.lang.String;ostring()

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, print-
StackTrace, printStackTrace

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait,
wait

Method Detail

toString

public java.lang.String toString ()

Overrides:

toString in class java.lang.Throwable

53/54

A.14. Class KQMLBadPerformativeException

java.lang.Object

|

+——java.lang.Throwab1e

+-—java.lang.Exception

+-—java.io.IOException

|

+--TRIPS.KOML.KQMLException

+——TRIPS.KQML.KQMLBadPerformativeException

public class KQMLBadPerformativeException

extends KQMILException

Thrown when the expression read is not a performative (or actually, not a list, since we
don't check that it's actually a verb followed by keyword/value pairs).

See Also:

KoMLReader, Serialized Form

Method Summary

java.lang.stringtostring()

Methods inherited from class javalang. Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, print-
stackTrace, printStackTrace

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyaAll, wait, wait,
walt

Method Detail

toString

public java.lang.String tostring ()

Overrides:

toString in class java.lang. Throwable

55/56

A.15. Class KQMLException

java.lang.Object

l

+--java.lang.Throwable

+—-java.lang.Exception

+--java.io.IOException

l

+--TRIPS.KQML .KQMLException
Direct Known Subclasses:
KOMILBadCharacterException, KOMILBadCloseException,

KOMLB adCommaException, KOMLB adHashException, K(MLB adOpenException,
KOMLBadPerformativeException, K(zMLExpectedWhitespaceException

public class KQMLException

extends java.io.JOException

Parent class of all exceptions thrown during KQML 1/O. This is a subclass of
IOException so that applications that don't care about the details of an error can just catch
them all.

See Also:

KOMLReader, Serialized Form

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, print-
stackTrace, printStackTrace, toString

[Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyall, wait, wait,

Mait

57

A.16. Class KQMLExpectedWhitespaceException

java.lang.Object

+--java.lang.Throwable

+--java.lang.Exception

+--java.io.IOException

+-—TRIPS.KOQOML.KQOMLEXception

+--TRIPS.KQML.KQMLExpectedWhitespaceException

public class KQMLExpected WhitespaceException
extends KQMILException

Thrown when whitespace is expected but something else is read.
See Also:

KQMLReader, Serialized Form

Method Summary

java.lang.StringltoString()

Methods inherited from class java.lang.Thfowable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, print-
StackTrace, printStackTrace

[Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait,
wait

Method Detail

toString

public java.lang.String tostring()

Overrides:

toString in class java.lang. Throwable

58

B. Documentation for Package TRIPS.TripsApplet

Class Summary

[TripsApplet

Provides a frame so an applet can be run as an application
TripsAppletFrame ApplgtStub and Apple’gContext are 1mplernented to provide
AIpSAPPIEiatit 2 minimal browserlike interface to avoid crashes from

browser applet specific calls like showStatus().

TripsAppletFrameCloser

59/60

B.1. Class TripsApplet

java.lang.Object

l

+--java.awt .Component

l

+--java.awt.Container

I

+--java.awt.Panel

|

+——java.applet.Applet

l

+-_TRIPS.TripsApplet.TripsApplet

public class TripsApplet

extends java.applet.Applet

implements TRIPS.KQML.KQMLReceiver
See Also:

Serialized Form

Field Summary

protected static java.lang.String{PEFAULT HOST

protected static int[DEFAULT PORT

protected java.lang.Stringjhost

protected TRIPS.KQML.KQMLReaderjin

protected java.lang.String duleName

|

|

protected java.lang.StringgrougName
|

protected java.io.PrintWriterout
|

protected java.lang.String(]jparameters

protected intjport

protectedjreader
TRIPS.KQML.KQMLReaderThread

protected booleanusestdio

61

ields inherited from class java.awt.Component

IBOTTOM_ALIGNMENT, CENTER_ALIGNMENT, LEFT_ALIGNMENT, RIGHT_ALIGNMENT,
ITOP_ALIGNMENT

IConstructor Summary

TripsApplet ()

[rripsApplet (java.lang.Stringl] argv)

Method Summary

protectediconnect (java.lang.String host, int startport)
void

protectedidebug(java.lang.String msg)
void

voiddestroy ()

protectederrorReglx(TRIPS.KQML.KQMLPerformative msg,
voidljava.lang.String comment)

voidjexit (int n)

java.lar@;getparameter(java.lang.String parm)
.String

protectedjhandleCommonParameters ()
void

voidiinit ()

voidlreceiveAchieve (TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

voidireceiveaAdvertise (TRIPS.KQML .KQMLPerformative msg,
java.lang.Object content) .

voidireceiveAskall (TRIPS.KQML.KQMLPerformative msg,
java.lang.0Object content)

voidlreceiveAskIf (TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

voidireceiveAskOne (TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

voidireceiveBroadecast (TRIPS.KQML .KQMLPerformative msg,
java.lang.Object content)

voidlreceiveBrokerall (TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

62

voidreceiveBrokerOna(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

voidreceiveDeleteAll(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

voidreceiveDeleteOne(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

voidreceiveDenx(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

voidreceiveDiscard(TRIPS.KQML.KQMLPerformative nsg)

voidjreceiveEOF ()

voidreceiveEos(TRIPS.KQML.KQMLPerformative msg)

voidreceiveError(TRIPS.KQML.KQMLPerformative msg)

voidreceiveForward(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

voidreceiveInsert(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

voidreceiveMessggggissingContent(TRIPS.KQML.KQMLPerformative msg)

voidreceiveMessageMissingVerb(TRIPS.KQML.KQMLPerformative msg)

void:eceiveNext(TRIPS.KQML.KQMLPerformative msg)

voidreceiveOtherPerformative(TRIPS.KQML.KQMLPerformative msg)

voidreceiveReadx(TRIPS.KQML.KQMLPerformative msg)

voidreceiveRecommendAll(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

voidreceiveRecommendOne(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

voidreceiveRecruitAll(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

voidreceiveRecruitOne(TRIPS.KQML.KQMLPerformative nsg,
java.lang.Object content)

voidireceiveRe ister(TRIPS.KQML.KQMLPerformative msqg,

63

java.lang.Object content)

voidlreceiveReply (TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

voidreceiveReggest(TRIPS.KQML.KQMLPerformative msqg,
java.lang.Object content)

voidireceiveRest (TRIPS.KQML.KQMLPerformative msg)

voidilreceiveSorry (TRIPS.KQML.KQMLPerformative msg)

voidlreceiveStandby (TRIPS.KQML .KQMLPerformative msg,
java.lang.Object content)

voidlreceiveStreamall (TRIPS.KQML .KQMLPerformative msg,
java.lang.Object content)

voidlreceiveSubscribe (TRIPS.KQML .KQMLPerformative msg,
java.lang.Object content)

voidireceiveTell (TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

void|receiveTransportaddress (TRIPS.KQML .KQMLPerformative msg,
java.lang.Object content)

voidreceiveUnachigve(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

voidireceiveUnadvertise (TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

voidlreceiveUndelete (TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

voidlreceiveUninsert (TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

voidjreceiveUnregister (TRIPS.KQML.KQMLPerformative msg)

voidireceiveuntell (TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

protectediregisterxr ()
void

protectedsend(TRIPS.KQML.KQMLPerformative msg)
void

protected|sendReadyMessage ()
void

64

voidlstart ()

voidistop ()

protectedwarn(java.lang.String msg)
void

Methods inherited from class java.applet. Applet

getAppletContext, getappletInfo, getAudioClip, getAudioClip, getCodeBase,
getDocumentBase, getImage, getlmage, getlLocale, getParameterInfo, isActive,
bewAudioClip, play, play. resize, resize, setStub, showStatus

Methods inherited from class java.awt.Panel

ddNotify

Methods inherited from class java.awt.Container

add, add, add, add, add, addContainerListener, addImpl, countComponents, de-
liverEvent, doLayout, findComponentAt, findComponentAt, getAlignmentX, ge-
tAlignmentY, getComponent, getComponentAt, getComponentAt, getComponentCount,
getComponents, getInsets, getLayout, getMaximumSize, getMinimumSize, get-
preferredSize, insets, invalidate, isAncestor0f, layout, list, list, locate,
ninimumSize, paint, paintComponents, paramstring, preferredSize, print,
pbrintComponents, processContainerEvent, processEvent, remove, remove, re-
moveAll, removeContainerListener, removeNotify, setFont, setLayout, update,
validate, validateTree

Methods inherited from class java.awt.Component

action, add, addComponentListener, addFocusListener, addInputMethodListener,
addKeyListener, addMouselListener, addMouseMotionListener, addPropertyChangeLl-
istener, addPropertyChangel.istener, pbounds, checkImage, checkImage, coa-
lesceEvents, contains, contains, createlmage, createlmage, disable, dis-
ableEvents, dispatchEvent, enable, enable, enableEvents, enableInputMethods,
firePropertyChange, getBackground, getBounds, getBounds, getColorModel, get-
componentOrientation, getCursor, getDropTarget, getFont, getFontMetrics, get-
Foreground, getGraphics, getHeight, getInputContext, getInputMethodRequests,
getLocation, getLocation, getLocationOnScreen, getName, getParent, getPeer,
getsize, getSize, getToolkit, getTreeLock, getWidth, getX, getY, gotFocus,
handleEvent, hasFocus, hide, imageUpdate, inside, igDisplayable, isDouble-
Buffered, isEnabled, igFocusTraversable, isLightweight, isOpagque, isShowing,
isValid, isvisible, keyDown, keyUp, 1list, list, list, location, lostFocus,
mouseDown, mouseDrag, mouseEnter, mouseExit, mouseMove, mouseUp, move,
hextFocus, paintAll, postEvent, preparelmage, preparelmage, printAll, proc-
essComponentEvent, processFocusEvent, processInputMethodEvent, process-
[KeyEvent, processMouseEvent, processMouseMotionEvent, remove, removeComponen-
tListener, removeFocusListener, removeInputMethodListener, removeKeyListener,
removeMouselListener, removeMouseMotionListener, removePropertyChangelListener,
removePropertyChangeListener, repaint, repaint, repaint, repaint, requestFo-
cus, reshape, setBackground, setBounds, setBounds, setComponentOrientation,
setCursor, setDropTarget, setEnabled, setForeground, setLocale, setLocation,
setLocation, setName, setSize, setSize, setVisible, show, show, size,
toString, transferFocus

65

ethods inherited from class java.lang.Object

~lone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait,
coait

Field Detail

parameters

protected java.lang.String[] parameters

host

protected java.lang.String host

port

protected int port

useStdio

protected boolean useStdio

moduleName

protected java.lang.String moduleName

groupName

protected java.lang.String groupName

reader

protected TRIPS.KQML.KQMLReaderThread reader

66

in

protected TRIPS.KQML.KQMLReader in

out

protected java.io.PrintWriter out

DEFAULT_HOST

protected static java.lang.String DEFAULT_HOST

DEFAULT_PORT

protected static int DEFAULT_ PORT

[Constructor Detail

TripsApplet

public TripsApplet (java.lang.String[] argv)

TripsApplet

public Tripsapplet ()

Method Detail

init

public void init ()

Overrides:

init in class java.applet.Applet

67

start

public void start()

Overrides:

start in class java.applet.Applet

stop

public void stop()
Overrides:

stop in class java.applet. Applet

destroy

public void destroy ()

Overrides:

destroy in class java.applet.Applet

exit

public void exit(int n)

handleCommonParameters

protected void handleCommonParameters ()

connect

protected void connect (java.lang.String host,
int startport)

register

protected void register ()

68

sendReadyMessage

protected void sendReadyMessage ()

getParameter

public java.lang.String getParameter(java.lang.String parm)

Overrides:

getParameter in class java.applet.Applet

receiveEOF

public wveid receiveEOF ()

Specified by:

receiveEOF in interface TRIPS.KQML. KQMLReceiver

receiveMessageMissingVerb

public void receiveMessageMissingVerb(TRIPS.KQML.KQMLPerformative msg)

Specified by:

receiveMessageMissingVerb in interface TRIPS.KQML.KQMLReceiver

receiveMessageMissingContent

public void

receiveMessageMissingContent(TRIPS.KQML.KQMLPerformative msg)

Specified by:

receiveMessageMissingContent in interface TRIPS.KQML.KQMLReceiver

receiveAskIf

69

public void receiveAskIf (TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receive AskIf in interface TRIPS. KQML.KQMILReceiver

receiveAskAll

public void receiveAskAll (TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receive AskAll in interface TRIPS. KQML.KQMILReceiver

receiveAskOne

public void receiveAskOne (TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receive AskOne in interface TRIPS.KQML.KQMLReceiver

receiveStreamAll

public void receiveStreamAll (TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receiveStreamAll in interface TRIPS.KQML.KQMLReceiver

receiveTell

public void receiveTell (TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receiveTell in interface TRIPS. KQML.KQMLReceiver

70

receiveUntell

public wvoid receiveUntell(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receiveUntell in interface TRIPS.KQML.KQMLReceiver

receiveDeny

public veoid receiveDeny(TRIPs.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receiveDeny in interface TRIPS.KQML.KQMLReceiver

receivelnsert

public void receiveInsert(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receivelnsert in interface TRIPS. KQML KQMLReceiver

receiveUninsert

public void receiveUninsert(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receiveUninsert in interface TRIPS.KQML.KQMLReceiver

receiveDeleteOne

public void receiveDeleteOne(TRIPS.KQML.KQMLPerformative msdg,
java.lang.Object content)

Specified by:
receiveDeleteOne in interface TRIPS.KQML.KQMLReceiver

71

receiveDeleteAll

public void receiveDeleteAll (TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receiveDeleteAll in interface TRIPS. KQML.KQMLReceiver

receiveUndelete

public void receiveUndelete (TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receiveUndelete in interface TRIPS. KQML.KQMLReceiver

receiveAchieve

public void receiveAchieve (TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receiveAchieve in interface TRIPS. KQML.KQMLReceiver

receiveUnachieve

public void.receiveUnachieve(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receiveUnachieve in interface TRIPS.KQML.KQMLReceiver

receiveAdvertise

public void receiveAdvertise (TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:

72

receiveAdvertise in interface TRIPS.KQML.KQMLReceiver

receiveUnadvertise

public void receiveUnadvertise(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receiveUnadvertise in interface TRIPS.KQML. KQMLReceiver

receiveSubscribe

public void receiveSubscribe(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receiveSubscribe in interface TRIPS.KQML KQMLReceiver

receiveStandby

public void receiveStandby(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receiveStandby in interface TRIPS.KQML KQMLReceiver

receiveRegister

public void receiveRegister(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receiveRegister in interface TRIPS.KQML.KQMLReceiver

receiveForward

public void receiveForward(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

73

Specified by:
receiveForward in interface TRIPS.KQML.KQMLReceiver

receiveBroadcast

public void receiveBroadcast (TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receiveBroadcast in interface TRIPS. KQML.KQMLReceiver

receiveTransportAddress

public void receiveTransportAddress(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receiveTransportAddress in interface TRIPS. KQML.KQMLReceiver

receiveBrokerOne

public void receiveBrokerOne (TRIPS.KQML.KQOMLPerformative msg,
java.lang.Object content)

Specified by:
receiveBrokerOne in interface TRIPS. KQML.KQMLReceiver

receiveBrokerAll

public void receiveBrokerAll (TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receiveBrokerAll in interface TRIPS. KQML.KQMLReceiver

receiveRecommendQOne

74

public void receiveRecommendOne(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receiveRecommendOne in interface TRIPS.KQML. KQMLReceiver

receiveRecommendAll

public wvoid receiveRecommendAll(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receiveRecommendAll in interface TRIPS.KQML . KQMLReceiver

receiveRecruitOne

public void receiveRecruitOne(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receiveRecruitOne in interface TRIPS.KQML.KQMLReceiver

receiveRecruitAll

public void receiveRecruitAll(TRIPS.KQML.KQMLPerformative msy,
java.lang.Object content)

Specified by:
receiveRecruitAll in interface TRIPS.KQML.KQMLReceiver

receiveReply

public void receiveReply(TRIPS.KQML.KQMLPerformative msg,
java.lang.Object content)

Specified by:
receiveReply in interface TRIPS. KQML.KQMLReceiver

75

receiveRequest

public void receiveRequest (TRIPS.KQML .KQMLPerformative msg,
java.lang.Object content)

Specified by:
receiveRequest in interface TRIPS.KQML.KQMLReceiver

receiveEos

public void receiveEos (TRIPS.KQML.KQMLPerformative msg)

Specified by:
receiveEos in interface TRIPS.KQML.KQMLReceiver

receiveError

public void receiveError (TRIPS.KQML.KQMLPerformative msg)

Specified by:
receiveError in interface TRIPS. KQML.KQMLReceiver

receiveSorry

public void receiveSorry (TRIPS.KQML.KQMLPerformative msg)

Specified by:
receiveSorry in interface TRIPS.KQML.KQMLReceiver

receiveReady

public void receiveReady (TRIPS.KQML.KQMLPerformative msg)
Specified by:
receiveReady in interface TRIPS. KQML.KQMLReceiver

76

receiveNext

public veid receiveNext(TRIPS.KQML.KQMLPerformative msg)

Specified by:
receiveNext in interface TRIPS.KQML.KQMLReceiver

receiveRest

public void receiveRest(TRIPS.KQML.KQMLPerformative msg)

Specified by:
receiveRest in interface TRIPS. KQML.KQMLReceiver

receiveDiscard

public void receiveDiscard(TRIPS.KQML.KQMLPerformative nsg)

Specified by:
receiveDiscard in interface TRIPS. KQML.KQMLReceiver

receiveUnregister

public void receiveUnregister(TRIPS.KQML.KQMLPerformative msqg)

Specified by:
receiveUnregister in interface TRIPS.KQML.KQMLReceiver

receiveOtherPerformative

public void receiveOtherPerformative(TRIPS.KQML.KQMLPerformative msg)

Specified by:
receiveOtherPerformative in interface TRIPS.KQML.KQMLReceiver

send

77

protected void send (TRIPS.KQML .KQMLPerformative msg)

errorReply

protected void errorReply(TRIPS.KQML.KQMLPerformative msg,
java.lang.String comment)

warn

protected void warn(java.lang.String msg)

debug

protected void debug (java.lang.String msg)

78

B.2. Class TripsAppletFrame

java.lang.Object

|

+--java.awt .Component

+--java.awt.Container

|

+--java.awt .Window

l

+--java.awt.Frame

l

+--TRIPS.TripsApplet.TripsAppletFrame

public class TripsAppletFrame
extends java.awt.Frame
implements java.applet. AppletStub, java.applet. AppletContext

Provides a frame so an applet can be run as an application AppletStub and AppletContext
are implemented to provide a minimal browserlike interface to avoid crashes from
browser applet specific calls like showStatus().

See Also:

TripsApplet, TripsReader, Frame, Serialized Form

[Fields inherited from class java.awt.Frame

CROSSHAIR_CURSOR, DEFAULT_CURSOR, E_RESIZE_CURSOR, HAND_CURSOR, ICONIFIED,
MOVE_CURSOR, N_RESIZE_CURSOR, NE_RESIZE_CURSOR, NORMAL, NW_RESIZE_CURSOR,
S RESIZE_CURSOR, SE_RESIZE_CURSOR, SW_RESIZE_CURSOR, TEXT_CURSOR,
y_RESIZE_CURSOR, WAIT_CURSOR

Fields inherited from class java.awt.Component

BOTTOM_ALIGNMENT, CENTER_ALIGNMENT, LEFT ALIGNMENT, RIGHT_ALIGNMENT,
TOP_ALIGNMENT

Constructor Summary

TripsAppletFrame (TripsApplet a)

Method Summary

voidlappletResize (int width, int height)

79

java.applet. etApplet (java.lang.String name)
Applet

java.applet. etAppletContext ()
AppletContext

java.util.En jgetApplets()
umeration

java.applet. etAudioClip (java.net.URL url)
AudioClip

java.net.URLFetCodeBase()

java.net.URLFetDocumentBase()

java.awt.Ima etImage (java.net .URL url)
ge‘

java.lang.St hetparameter(java.lang.String name)
ring

booleaniisActive ()

voidishowDocument (java.net.URL url)

voidishowDocument (java.net .URL url, java.lang.String target)

voidﬁhowstatus(java.lang.String status)

Methods inherited from class java.awt.Frame

addNotify, finalize, getCursorType, getFrames, getIconImage, getMenuBar, get-
State, getTitle, isResizable, paramString, remove, removeNotify, setCursor,
setIconImage, setMenuBar, setResizable, setState, setTitle

ethods inherited from class java.awt.Window

SddwindowListener, applyResourceBundle, applyResourceBundle, dispose, getFo-
cusOwner, getInputContext, getLocale, getOwnedwindows, getOwner, getToolkit,
getWarningString, isShowing, pack, postEvent, processEvent, processWindow-
Event, removeWindowListener, show, toBack, toFront

Methods inherited from class java.awt.Container

add, add, add, add, add, addContainerListener, addImpl, countComponents, de-
1iverEvent, doLayout, findComponentAt, findComponentAt, getAlignmentX, ge-
tAlignmenty, getComponent, getComponentAt, getComponentAt, getComponentCount,
getComponents, getlInsets, getlLayout, getMaximumSize, getMinimumSize, get-
PreferredSize, insets, invalidate, isAncestorOf, layout, list, list, locate,
ninimumSize, paint, paintComponents, preferredsSize, print, printComponents,
processContainerEvent, remove, Iemove, removeAll, removeContainerListener,
|setFont, setLayout, update, validate, validateTree

Methods inherited from class java.awt.Component

laction, add, addComponentListener, addFocusListener, addInputMethodListener,

80

addKeyListener, addMouselistener, addMouseMotionlListener, addPropertyChangel-
istener, addPropertyChangelistener, bounds, checkImage, checkImage, coa-
lesceEvents, contains, contains, createlmage, createImage, disable, dis-
ableEvents, dispatchEvent, enable, enable, enableEvents, enableInputMethods,
firePropertyChange, getBackground, getBounds, getBounds, getColorModel, get-
ComponentOrientation, getCursor, getDropTarget, getFont, getFontMetrics, get-
Foreground, getGraphics, getHeight, getInputMethodRequests, getLocation, get-
T.ocation, getLocationOnScreen, getName, getParent, getPeer, getSize, getSize,
getTreeLock, getWidth, getX, getY, gotFocus, handleEvent, hasFocus, hide, im-
ageUpdate, inside, isDisplayable, isDoubleBuffered, isEnabled, isFocus-
rraversable, isLightweight, isOpaque, isValid, isVisible, keyDown, keyUp,
list, list, list, location, lostFocus, mouseDown, mouseDrag, mouseEnter,
nouseExit, mouseMove, mouseUp, move, nextFocus, paintAll, preparelmage, Pre-
parelmage, printAll, processComponentEvent, processFocusEvent, processInput-
MethodEvent, processKeyEvent, processMouseEvent, processMouseMotionEvent, re-
moveComponentListener, removeFocuslistener, removeInputMethodListener, re-
moveKeyListener, removeMouselListener, removeMouseMotionListener, removeProp-
ertyChangelistener, removePropertyChangelistener, repaint, repaint, repaint,
repaint, requestFocus, reshape, resize, resize, setBackground, setBounds,
setBounds, setComponentOrientation, setCursor, setDropTarget, setEnabled,
setForeground, setLocale, setLocation, setLocation, setName, setSize, set-
Size, setVisible, show, size, toString, transferFocus

Methods inherited from class java.lang.Object

clone, equals, getClass, hashCode, notify, notifyAll, wait, walt, wait

[Constructor Detail

TripsAppletFrame

public TripsAppletFrame (TripsApplet a)

Method Detail

isActive

public boolean isActive()

Specified by:

isActive in interface java.applet. AppletStub

getDocumentBase

public java.net.URL getDocumentBase ()

Specified by:

81

getDocumentBase in interface java.applet. AppletStub

getCodeBase

public java.net.URL getCodeBase ()

Specified by:
getCodeBase in interface java.applet. AppletStub

getParameter

public java.lang.String getParameter(java.lang.String name)
Specified by:

getParameter in interface java.applet. AppletStub

getAppletContext

public java.applet.AppletContext getAppletContext ()

Specified by:
getAppletContext in interface java.applet. AppletStub

appletResize

public void appletResize (int width,
int height)

Specified by:

appletResize in interface java.applet. AppletStub

getAudioClip

public java.applet.AudioClip getAudioClip (java.net.URL url)

Specified by:
getAudioClip in interface java.applet.AppletContext

82

getlmage

public java.awt.Image getImage (java.net.URL url)

Specified by:

getlmage in interface java.applet. AppletContext

getApplet

public java.applet.Applet getApplet(java.lang.String name)

Specified by:

getApplet in interface java.applet.AppletContext

getApplets

public java.util.Enumeration getApplets ()

Specified by:

getApplets in interface java.applet. AppletContext

showDocument

public void showDocument (java.net .URL url)

Specified by:

showDocument in interface java.applet. AppletContext

showDocument

public void showDocument (java.net.URL url,
java.lang.String target)

Specified by:

showDocument in interface java.applet. AppletContext

83

showStatus

public void showStatus (java.lang.String status)

Specified by:

showStatus in interface java.applet. AppletContext

84

B.3. Using TripsApplet Classes

The following code fragment shows how easy it is to use the TripsApplet classes
to make a program operate as either an applet or an application.

First, write your code as an applet. Be sure to call super.init () inyour

init () method to let the TripsApplet class perform initializations. Use get-
parameter () to retrieve command-line or PARAM tag parameters (for applica-
tions and applets, respectively).

Then, if your applet is in class FooApplet, for example, you should create class
FooApplication as below:

/*
* FooApplication.java

* This simply wraps the FooApplet in an TripsAppletFrame.
*/

import TRIPS.TripsApplet.”*;

public class FooApplication extends FooApplet {
public static void main(String argv[]) {
new TripsAppletFrame (new FooApplet (argv)) ;
}

That's it. To run your program as an application, you pass the application’s class
name (FooApplication in this example) to the java interpreter, followed by
any options. For example:

% java FooApplication -geometry 100x25
To run as an applet, embed the appropriate code in an HTML page, make the

applet class file(s) available from your web server, and visit the page with your
browser. You could also use the appletrunner to test applets.

85

C. Signing Applets in the JDK1.1 Security Model

This section describes the procedure to be followed to create a signed applet un-
der the JDK 1.1 security model and using JDK 1.1 tools.

The main tool used here is javakey. To use javakey to sign an applet, making
it trusted, one must first create a trusted signer identity in the javakey database.
There must also be at least one certificate in the database associated with the
trusted signer. We can obtain a certificate commercially from an authorized CA
(certfificate authority) or we can create our own certificates using javakey. In
our case we have generated our own certificate. A brief summary of the neces-
sary procedures is as follows:

1. Create identity in the javakey database

Create signer in the javakey database

Generate public/private crpytographic keys for the signer

Create a certificate directive file

Generate a certificate associated with the signer

View the javakey database to ensure information is saved properly
Create an applet signing directive file

Create a jar file containing all applet resources

© 0N O G W N

Sign applets using the applet signing directive file
. Embed the signed applet into an HTML document using OBJECT /EMBED
tags

The remainder of this document describes these steps in more detail. We should
note that the 1.1.6 version of javakey appears to be broken. We have used the
1.1.5 version in our experiments.

[
]

1. First we create a trusted identity in the database:
% javakey -c dcostello true
This creates an identity named dcostello and sets “trusted”to true.

2. Next we inform the database that dcostello will be a trusted signer.

% javakey -cs dcostello true

This step will automatically create an identity.obj file in the home direc-
tory of the person executing this command. This seems like a bad idea since
it means you would need multiple accounts to create different signers but this
is the 1.1 model. We are exploring the new 1.2 model which solves some of

these issues more intelligently.

In any event, this will allow dcostello to sign applets and make them
trusted to those who have the identity.obj file he provides them.

3. Now we can generate public/ private key pairs for the new identity:

86

% javakey -gk dcostello DSA 512
Generated DSA keys (strength: 512).

By default javakey uses the DSA (Digital Signature Algorithm). Supposedly
javakey can be instructed to use RSA if you have the licensing but we have-
n't tested this. We have found the DSA method with 512 bit keys, sufficient.
Our goal is not the highest level of security but rather a reasonable way in
which to get an applet permission to perform tasks that lie outside of the
browser “sandbox security” model for Netscape and Internet Explorer.

javakey provides a way to save both your public and private keys to a file
as well as other functionality. I will not discuss those things here but for
more information see
http://java.sun.com/securi ty/usingJavakey.html.

. Before applets can be signed we must have a certificate associated with the
signer. An example certificate directive file is given in Figure C1. It appears
there may be a Y2K problem with expiration dates (end.date) We haven't
fully tested this but early tests seem to indicate trouble. Again the new sign-
ing tool should fix this (we can hope).

Now we can generate the certificate using the certificate directive file:
% javakey -gc certdirective.txt

Next view the database to verify its contents.
% javakey -1d

The results should look something like the following:

Scope: sun.security.IdentityDatabase, source file: /u/costello/id
entitydb.obj

[Signer]dcostello[identitydb.obj][trusted]
public and private keys initialized
certificates:

certificate 1 for : CN=dave costello, OU=cs department, O=Univ
ersity of Rochester, C=United States

from : CN=dave costello, OU=cs department, O=University of Roches
ter, C=United States

No further information available.

Now create the applet signing directive file. An example directive file is given
in Figure C2.

Next create a jar file for the applet and it's resources:
% jar cvf someapplet.jar somefile.class
See the jar tool documentation for more info on using jar.
. Then sign the applet using the applet directive file (see #7 above):

% javakey -gs appletdirectivefile someapplet.jar

87

This step creates the new jar file containing the digital signature of the signer.

10.Embed the signed applet into an HTML document using OBJECT/EMBED
tags. These tags are used to force the browser (specifically Netscape or Inter-
net Explorer) to invoke the java-plugin. The plug-in is needed to allow the
browser to recognize the applet as signed and trusted. Without the java-
plugin the browser will not recognize a signed applet and therefore will not
give it full permissions. An Example HTML document is shown in Figure C3.

Notice that the codebase attribute, and the pluginspage attribute, are
used to inform the browser that the plugin is needed. If the browser viewing
the HTML document doesn't have the plug-in the user will be prompted to
download and install the plug-in. The user is then taken directly to the plug-
in download page. After installing the plug-in the user resumes the loading
of the applet by clicking on a box displayed in the browser.

88

#

Certificate Directive for javakey

d costello Time-stamp: <98/10/27 16:09:41 costello>
used for creating/issuing cryptographic certificates
#issuer

issuer.name=dcostello

#certifcate to use for signing (required if not self signed)

#issuer.cert=1

#required info

subject .name=dcostello

subject.real .name=dave costello
subject.org.unit=cs department
subject.org=University of Rochester

subject.country=United States

#cert info required
start.date=1 Oct 1998
end.date=30 Nov 1999

serial.number=1001

#signature algorithm to be used if not DSA
#signature.algorithm=MD5/RSA

#certificate file name

out.file=davecert.cer

Figure C1: Example Certificate Directive File

89

H W = 3 W

H#H o o = W 3

JAR signing directive. This is the directive file used by javakey to
sign a JAR file.
decostello Time-stamp: <98/10/27 17:07:01 costello>

use:javakey -gs directivefile jarfile

Which signer to use. This signer must be in the database.

signer=dcostello

Certificate number to use for this signer. This determines which
certificate will be included in the PKCS#7 block. This is mandatory
and is l1-based. Its value should be the number that javakey
previously assigned to the signer's certificate when it generated it
(or imported it). You can see which numbers javakey assigns

to certificates by viewing the output of the

-1d or -1li javakey option.

cert=1

Certificate chain depth of a chain of certificates to include. This is
currently not supported.

chain=0

The name to give to the generated signature file and associated signa-
ture
block. This must be 8 characters or less.

#
#
#

The generated signature file and associated signature block will have

this name, with the .SF and .DSA extensions, respectively.

In this example, the files will be DUKESIGN.SF and DUKESIGN.DSA.
signature.file=DAVESIGN

(Optional) The name to give to the signed JAR file.

out.file=signedJar.jar

Figure C2: Example Applet Signing Directive File

90

<!-- HTML document containing an embedded java applet -—>

<t-- The APPLET tags have been converted to OBJECT/EMBED tags -=>
<le-- to invoke the java plug-in inside the browser. -—>
<html>

<body>

<!--"CONVERTED_APPLET"-->

<!-- CONVERTER VERSION 1.0 -->

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
WIDTH = 200 HEIGHT = 200

codebase="http://java.sun.com/products/plugin/1.1.1/jinstall-111-
win32.cab#Version=1,1,1,0">

<PARAM NAME=CODE VALUE="KeybMgrApplet.class" >

<PARAM NAME=ARCHIVE VALUE="signedJar.jar" >

<PARAM NAME="type" VALUE="application/x-java-applet;version=1.1">

<PARAM NAME=geometry VALUE="80x4+0-0">

<PARAM NAME=serverhost VALUE ="mega.cs.rochester.edu">

<COMMENT>

<EMBED type="application/x-java-applet;version=1.1"
java_CODE="KeybMgrApplet.class™
java_ARCHIVE="signedJar.jar"
WIDTH=200 HEIGHT=200
geometry="80x4+0-0"
serverhost="mega.cs.rochester.edu"

pluginspage=“http://java.sun.com/products/plugin/l.l.l/plugin—
install.html">

<NOEMBED>< /COMMENT>
</NOEMBED></EMBED>
</OBJECT>

</body>

</html>

Figure C3: Example HTML Document Using Signed Applet

@U.S. GOVERNMENT PRINTING OFFICE: 2000-510-079-81275

91

